

OKI Semiconductor

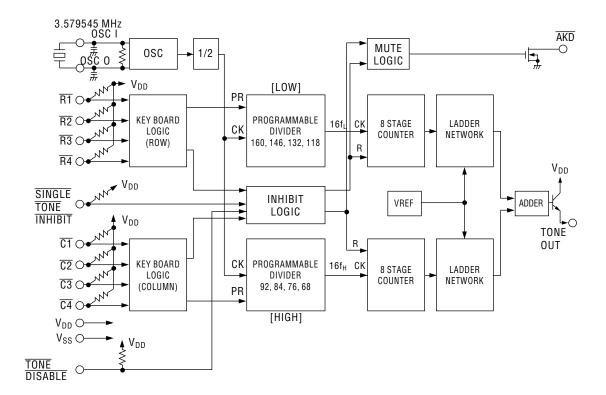
This version: Jan. 1998 Previous version: Nov. 1996

MSM6234

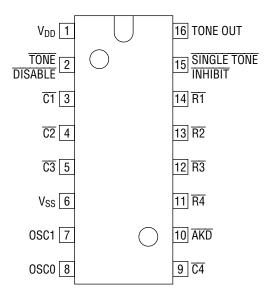
DTMF Tone Dialer LSI

GENERAL DESCRIPTION

The MSM6234 is a tone dialer LSI which is fabricated by Oki's low power consumption CMOS silicon gate technology.


The MSM6234 can generate 16 DTMF (Dual Tone Multi Frequency) signals which consists of 4 higher group frequencies and 4 lower group frequencies.

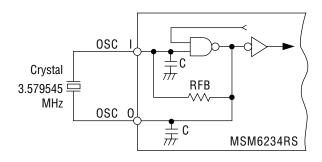
FEATURES


- The standard 2 of 8 keyboard can be used.
- The low power consumption by use of CMOS silicon gate technology.
- Supply voltage 2.5 V to 8.5 V.
- Either single tone or dual tone output.
- 3.579545 MHz crystal oscillation.
- Interface with microcotroller.
- Package:

16-pin plastic DIP (DIP16-P-300-2.54) (Product name: MSM6234RS)

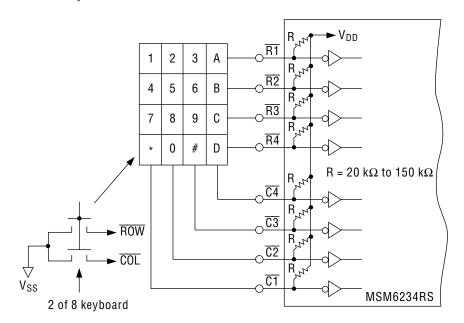
BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)



16-Pin Plastic DIP

PIN AND FUNCTIONAL DESCRIPTIONS


OSCI, OSCO

The 3.579545 MHz crystal oscillator is connected to these pins. A feedback resistor and the condensers are incorporated.

R1, R2, R3, R4, C1, C2, C3, C4

These are input pins of negative logic to be connected to the keyboard. The standard 2 of 8 keyboard can be used with MSM6234RS as illustrated below.

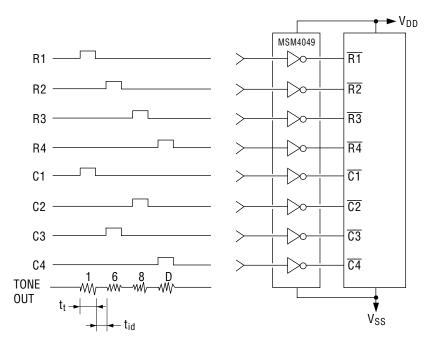
 $\overline{R1}$ to $\overline{R4}$ are the input pins of the row side, while $\overline{C1}$ to $\overline{C4}$ are the input pins of the column side. All the pins are provided with the pull-up resistor of 20 k Ω to 150 k Ω internally.

The dual tone is output from the TONE OUT pin, by setting both of a row input and a column input to the ground voltage.

The Table 1 (See Note) shows the relation between the nominal frequency and the tone output frequency, while the Table 2 (See Note) shows the input condition of $\overline{R1}$ to $\overline{R4}$ pins and $\overline{C1}$ to $\overline{C4}$ pins.

• Refer to the Table 1 and Table 2

Table-1


Effective Input		Nominal Frequency	Tone Output Frequency	Accuracy (%)	Remarks	
	R1	697 Hz	699.1 Hz	+0.30%	Low Group	
(DOW)	R2	770 Hz	766.2 Hz	-0.49%		
(ROW)	R3	852 Hz	847.4 Hz	-0.54%		
	R4	941 Hz	948.0 Hz	+0.74%		
(COLUMN)	C1	1209 Hz	1215.9 Hz	+0.57%		
	C2	1336 Hz	1331.7 Hz	-0.32%	High Group	
	C3	1477 Hz	1471.9 Hz	-0.35%	riigii aroup	
	C4	1633 Hz	1645.0 Hz	+0.73%		

Ta	h	le-2

Row Input	Column Input	Tone Output *	Remarks	
No	No	0 V		
1	1	f _L + f _H	Dual tone	
No	1	f _H	Single tone (Only column)	
1	No	0 V		
More than 2	No	0 V		
More than 2	1	f _H	Single tone	
No	More than 2	0 V		
1	More than 2	fL	Single tone	
More than 2	More than 2	0 V		

f_L: Low Group f_H: High Group

Sample Interface Circuit with Microcontroller

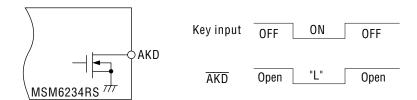
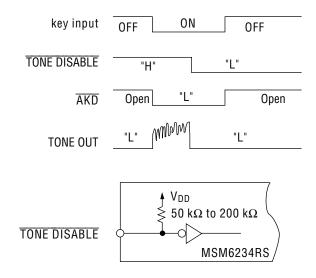

 $t_t \geq 50$ ms and 30 ms $\leq tid \leq 3$ s

Figure 1

 $^{^{*}}$: The tone output shown is in the case when the load resistance is connected between the TONE OUT pin and the V_{SS} .

AKD

The \overline{AKD} pin drives the external bipolar transistor by its N-channel open drain output. This pin is open when the key input is off, while it becomes low when the key input is on. \overline{AKD} is used for the mute of the transmitter/receiver.

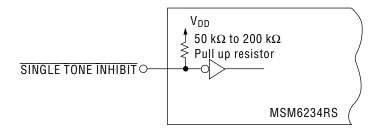


TONE DISABLE

This is an input pin to control the output of the TONE OUT pin.

When the input to this pin is high level, the TONE OUT pin normally operates. When the input to this pin is low level, however, the output from the TONE OUT pin is prohibited even if the key input is on.

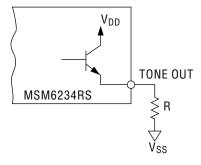
AKD is effective at that time. This pin is provided with the pull-up resistance of $50~k\Omega$ to $200~k\Omega$ internally.



SINGLE TONE INHIBIT

When more than two columns are selected against only one row, or when more than 2 rows are selected against only one column, the single tone is output from the TONE OUT pin. This SINGLETONE INHIBIT pin is a negative logic input pin to control the output of the TONE OUT pin in those cases. Refer to the Table-2.

When the input to this pin is high level, both of the single tone and dual tone are output from the TONE OUT pin. When the input to this pin is low level, however, the single tone is prohibited to output from the TONE OUT pin and becomes DC level.


This pin is provided with the pull-up resistor of 50 k Ω to 200 k Ω .

TONE OUT

The low group frequency and the high group frequency selected by the keyboard are synthesized and output from this TONE OUT pin. Because the output form is the NPN open emitter style, the load resistance must be connected externally. It is same for the case of the single tone output. The output amplitude of the high group is bigger than that of the low group by 1 to 2 dB.

The distortion of the dual tone is maximum 10%.

V_{DD}, V_{SS}

 V_{DD} is a power supply. V_{SS} is ground.

Sample Output Waveform of the Single Tone

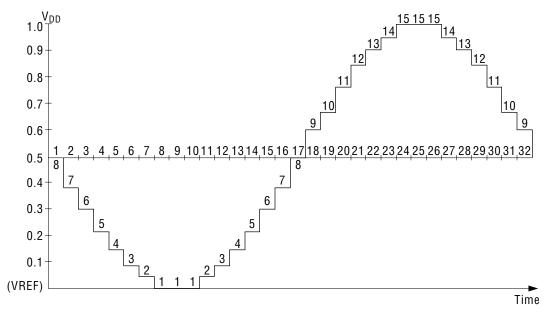


Figure 2

Tone Amplitude (mV rms)

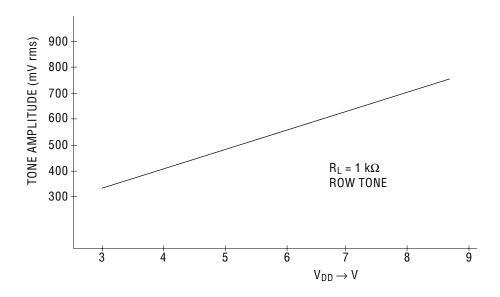


Figure 3

ABSOLUTE MAXIMUM RATINGS

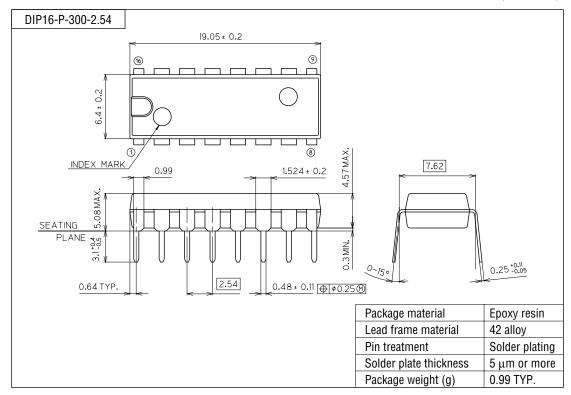
Parameter Syn		Condition	Rating	Unit
Power Supply Voltage	V_{DD}	Ta = 25°C	-0.3 to 9.5	V
Storage Temperature	T _{STG}	_	−55 to +150	°C
Power Dissipation	P _D	Ta = 25°C	500	mW
Input Voltage	VI	_	$V_{SS} - 0.3$ to $V_{DD} + 0.3$	V
Output Voltage	V ₀	_	$V_{SS} - 0.3$ to $V_{DD} + 0.3$	V

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol		Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{DD}	_	2.5	5	8.5	V
Operating Temperature	Тор	_	-30	_	+70	°C
Crystal Frequency	f _(XT)	Ta = -30° C to +70°C V _{DD} = 2.5 V to 8.5 V	_	3.579545	_	MHz

ELECTRICAL CHARACTERISTICS

DC Characteristics


 $(Ta = -30^{\circ}C \text{ to } +70^{\circ}C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	· `	Applicable Pin
Input High Voltage	V _{IH}	_	0.7V _{DD}		V _{DD}	V	\overline{C}_1 to \overline{C}_4 , \overline{R}_1 to \overline{R}_4
Input Low Voltage	V _{IL}	_	V _{SS}	_	0.3V _{DD}	V	\overline{C}_1 to \overline{C}_{4} , \overline{R}_1 to \overline{R}_4
Low Level Input Leakage Current	I _{IL}	V _{DD} = 8.5 V, V _{IL} = 0 V	-0.0567	_	-0.425	mA	\overline{C}_1 to $\overline{C}_{4,}$ \overline{R}_1 to \overline{R}_4
"TONE OUT" Output Voltage	V _{OUT}	$V_{DD} = 3.0 \text{ V}, R_L = 1 \text{ k}\Omega$	235	ı	437	mV rms	TONE OUT
Difference of High/Low Band Level	dB _{CR}	V _{DD} = 3.0 V to 8.5 V	1	1.5	2	dB	TONE OUT
Distortion	% DIS	$V_{DD} = 3.0 \text{ V to } 8.5 \text{ V}$	_	_	10	%	TONE OUT
High Level Input Leakage Current	I _{IH}	$V_{DD} = 8.5 \text{ V}, V_{IH} = 8.5 \text{ V}$	_	_	1	μА	\overline{C}_1 to \overline{C}_4 , \overline{R}_1 to \overline{R}_4 \overline{STI} , \overline{TOND}^*
Low Level Input Leakage Current	I _{IL}	$V_{DD} = 8.5 \text{ V}, V_{IL} = 0 \text{ V}$	-42.5	_	-170	μА	STI, TOND*
Input High Voltage	V _{IH}	_	0.7V _{DD}	_	V _{DD}	V	STI, TOND*
Input Low Voltage	V _{IL}	_	V _{SS}	_	0.3V _{DD}	V	STI, TOND*
Power Supply Current (Stand-by)	I _{DDS}	V _{DD} = 8.5 V, No load, Key-OFF	_	_	200	μА	
Power Supply Current (Operating)	I _{DD}	V_{DD} = 8.5 V, R_L = 1 k Ω , No load, Key-ON	_	_	25	mA	
Low Level Output Leakage		$V_{DD} = 3 \text{ V}, V_{OL} = 0.5 \text{ V}$	0.53	1.3		A	AVD
Current	I _{OL}	$V_{DD} = 8.5 \text{ V}, V_{OL} = 0.5 \text{ V}$	2.0	5.3	_	mA	ĀKD
"OFF" Leakage Current	I _{OFF}	$V_{DD} = 8.5 \text{ V}$			10	μΑ	ĀKD
TONE OUT Rise Time	t _{rise}	V _{DD} = 3.0 V to 8.5 V	_	3.0	5.0	ms	TONE OUT

^{*:} $\overline{STI} \rightarrow \overline{SINGLE} \ TONE \ INHIBIT$ $\overline{TOND} \rightarrow \overline{TONE} \ DISABLE$

PACKAGE DIMENSIONS

(Unit: mm)

